Coupling of Ca(2+) to CREB activation and gene expression in intact cerebral arteries from mouse : roles of ryanodine receptors and voltage-dependent Ca(2+) channels.
نویسندگان
چکیده
Pathological changes of the vasculature are characterized by changes in Ca(2+) handling and alterations in gene expression. In neurons and other cell types, [Ca(2+)](i) often drives changes in gene expression. However, the relationship between Ca(2+) signaling and gene expression in vascular smooth muscle is not well understood. This study examines the ability of Ca(2+) influx through voltage-dependent, L-type Ca(2+) channels (VDCCs) and Ca(2+) release through ryanodine receptors (RyRs) to activate the transcription factor, cAMP-responsive element binding protein (CREB), and increase c-fos levels in intact cerebral arteries. Membrane depolarization increased the fraction of nuclei staining for phosphorylated CREB (P-CREB) and levels of c-fos mRNA in intact mouse cerebral arteries. Ryanodine, which inhibits RyRs, increased P-CREB staining and c-fos levels. Forskolin, an activator of adenylyl cyclase, and sodium nitroprusside, an NO donor, increased P-CREB and c-fos levels. Nisoldipine, an inhibitor of VDCCs, reversed the effects of depolarization and ryanodine on P-CREB and c-fos levels, but not the effects of forskolin or sodium nitroprusside. Inhibition of Ca(2+)/calmodulin-dependent protein kinase (CaM kinase) blocked increases in P-CREB and c-fos levels seen with membrane depolarization, suggesting that CaM kinase has an important role in the pathway leading from Ca(2+) influx to CREB-mediated changes in c-fos levels. Our data suggest that membrane depolarization increases [Ca(2+)](i) through activation of VDCCs, leading to increased P-CREB and c-fos, and that RyRs have a profound effect on this pathway by indirectly regulating Ca(2+) entry through VDCCs. These results provide the first evidence of Ca(2+) regulation of CREB and c-fos in arterial smooth muscle.
منابع مشابه
Alkaline pH shifts Ca2+ sparks to Ca2+ waves in smooth muscle cells of pressurized cerebral arteries.
The effects of external pH (7.0-8.0) on intracellular Ca(2+) signals (Ca(2+) sparks and Ca(2+) waves) were examined in smooth muscle cells from intact pressurized arteries from rats. Elevating the external pH from 7.4 to 7.5 increased the frequency of local, Ca(2+) transients, or "Ca(2+) sparks," and, at pH 7.6, significantly increased the frequency of Ca(2+) waves. Alkaline pH-induced Ca(2+) w...
متن کاملNitric oxide suppresses cerebral vasomotion by sGC-independent effects on ryanodine receptors and voltage-gated calcium channels.
BACKGROUND/AIMS In cerebral arteries, nitric oxide (NO) release plays a key role in suppressing vasomotion. Our aim was to establish the pathways affected by NO in rat middle cerebral arteries. METHODS In isolated segments of artery, isometric tension and simultaneous measurements of either smooth muscle membrane potential or intracellular [Ca(2+)] ([Ca(2+)](SMC)) changes were recorded. RES...
متن کاملOpposing roles of smooth muscle BK channels and ryanodine receptors
24 In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine 25 receptors (RyRs) generate “Ca sparks” that activate large conductance, Ca26 and voltage-sensitive potassium (BK) channels to oppose pressure-induced 27 (myogenic) constriction. Here, we show that BK channels and RyRs have 28 opposing roles in the regulation of arterial tone in response to sympathetic nerve 29 a...
متن کاملStore-Operated Ca Entry Activates the CREB Transcription Factor in Vascular Smooth Muscle
Ca -regulated gene transcription is a critical component of arterial responses to injury, hypertension, and tumor-stimulated angiogenesis. The Ca /cAMP response element binding protein (CREB), a transcription factor that regulates expression of many genes, is activated by Ca -induced phosphorylation. Multiple Ca entry pathways may contribute to CREB activation in vascular smooth muscle includin...
متن کاملOntogeny of Local Sarcoplasmic Reticulum Ca Signals in Cerebral Arteries Ca Sparks as Elementary Physiological Events
Ca release through ryanodine receptors (RyRs) in the sarcoplasmic reticulum is a key element of excitation-contraction coupling in muscle. In arterial smooth muscle, Ca release through RyRs activates Ca-sensitive K (KCa) channels to oppose vasoconstriction. Local Ca 21 transients (“Ca sparks”), apparently caused by opening of clustered RyRs, have been observed in smooth and striated muscle. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 86 7 شماره
صفحات -
تاریخ انتشار 2000